Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.04.05.588295

ABSTRACT

The use of metagenomic next-generation sequencing technology to obtain complete viral genome sequences directly from clinical samples with low viral load remains challenging--especially in the case of respiratory viruses--due to the low copy number of viral versus host genomes. To overcome this limitation, target capture sequencing for the enrichment of specific genomes has been developed and applied for direct genome sequencing of viruses. However, as the efficiency of enrichment varies depending on the probes, the type of clinical sample, etc., validation is essential before target capture sequencing can be applied to clinical diagnostics. Here we evaluated the utility of target capture sequencing with a comprehensive viral probe panel for clinical respiratory specimens collected from patients diagnosed with SARS-CoV-2 or influenza type A. We focused on clinical specimens containing low copy numbers of viral genomes. Target capture sequencing yielded approximately 180- and 2000-fold higher read counts of SARS-CoV-2 and influenza A virus, respectively, than metagenomic sequencing when the RNA extracted from specimens contained 59.3 copies/L of SARS-CoV-2 or 544 copies/L of influenza A virus, respectively. In addition, the target capture sequencing identified sequence reads in all SARS-CoV-2- or influenza type A-positive specimens with <26 RNA copies/L, some of which also yielded >70% of the full-length genomes of SARS-CoV-2 or influenza A virus. Furthermore, the target capture sequencing using comprehensive probes identified co-infections with viruses other than SARS-CoV-2, suggesting that this approach will not only detect a wide range of viruses, but also contribute to epidemiological studies.


Subject(s)
Coinfection
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-783083.v1

ABSTRACT

Since little is known about viral and host characteristics of breakthrough infections after COVID-19 vaccination, a nationwide investigation of breakthrough cases was initiated in Japan. 130 cases (90%+ received mRNA vaccines) were reported with respiratory specimens in 117 cases and sera in 68 cases. A subset of cases shed infectious virus regardless of symptom presence or viral lineages. Viral lineages for breakthrough infections matched both temporally and spatially with the circulating lineages in Japan with no novel mutations in spike receptor binding domain that may have escaped from vaccine-induced immunity were found. Anti-spike/neutralizing antibodies of breakthrough infections in the acute phase owing to vaccine-induced immunity were significantly higher than those from unvaccinated convalescent individuals but were comparable to vaccinated uninfected individuals, and followed by boosting in the convalescent phase. Symptomatic cases had low anti-spike/neutralizing antibodies in the acute phase with robust boosting in the convalescent phase, suggesting the presence of serological correlate for symptom development in COVID-19 vaccine breakthrough infections.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.29.20204297

ABSTRACT

Coronavirus disease 2019 (COVID-19) has had a major disease burden on many countries around the world. The spread of COVID-19 is anticipated to have a major impact on developing countries including African nations. To establish a point-of-care test for COVID-19, we developed a dry loop mediated isothermal amplification (LAMP) method to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. We carried out reverse transcription (RT)-LAMP using the Loopamp SARS-CoV-2 Detection kit (Eiken Chemical, Tokyo, Japan). The entire mixture except for the primers is dried and immobilized inside the tube lid. To determine the specificity of the kit, 22 viral genomes associated with respiratory infections, including the SARS coronavirus, were tested. No LAMP product was detected in reactions performed with RNA from these pathogens. The sensitivity of this assay, determined by either a real-time turbidity assay or colorimetric change of the reaction mixture, as evaluated by the naked eye or under illumination with ultraviolet light, was 10 copies/reaction. After the initial validation analysis, we analyzed 24 nasopharyngeal swab specimens collected from patients suspected to have COVID-19. Nineteen (79.2%) of the 24 samples were positive for SARS-CoV-2 RNA, as determined by real-time RT-PCR analysis. Using the Loopamp SARS-CoV-2 Detection kit, we detected SARS-CoV-2 RNA in 15 (62.5%) of the 24 samples. Thus, the sensitivity, specificity, positive predictive value, and negative predictive value of the Loopamp 2019-CoV-2 detection reagent kit were 94.0%, 96.0%, 95.9%, and 94.1%, respectively. The dry LAMP method for detection of SARS-CoV-2 RNA was fast and easy to use, solves the cold chain problem, and therefore represents a promising tool for diagnosis of COVID-19 in developing countries.


Subject(s)
COVID-19 , Respiratory Tract Infections
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.23.20041970

ABSTRACT

The Diamond Princess (DP) cruise ship was put under quarantine offshore Yokohama, Japan, after a passenger who disembarked in Hong Kong was confirmed as a COVID-19 case. We performed whole genome sequencing of SARS-CoV-2 directly from PCR-positive clinical specimens and conducted a haplotype network analysis of the outbreak. All tested isolates exhibited a transversion at G11083T, suggesting that SARS-CoV-2 dissemination on the DP originated from a single introduction event before the quarantine started. Although further spreading might have been prevented by quarantine, some progeny clusters were linked to transmission through mass-gathering events in the recreational areas and direct transmission among passengers who shared cabins during the quarantine. This study demonstrates the usefulness of haplotype network analysis in identifying potential infection routes.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL